Инсулин – это основное лекарство для лечения больных сахарным диабетом 1 типа. Иногда он также используется для стабилизации состояния пациента и улучшения его самочувствия при втором типе заболевания. Это вещество по своей природе является гормоном, который способен в малых дозах влиять на обмен углеводов.

В норме поджелудочная железа вырабатывает достаточное количество инсулина, который помогает поддерживать физиологический уровень сахара в крови. Но при серьезных эндокринных нарушениях единственным шансом помочь больному часто становятся именно инъекции инсулина. Принимать его перорально (в виде таблеток), к сожалению, нельзя, поскольку он полностью разрушается в пищеварительном тракте и утрачивает биологическую ценность.

Многие диабетики наверняка хоть раз задавались вопросом, из чего делают инсулин, который применяется в медицинских целях? В настоящее время чаще всего это лекарство получают с помощью методов генной инженерии и биотехнологии, но иногда его извлекают из сырья животного происхождения.

Препараты, получаемые из сырья животного происхождения

Получение этого гормона из поджелудочной железы свиней и крупного рогатого скота – старая технология, которая сегодня используется довольно редко. Это связано с невысоким качеством получаемого лекарства, его склонностью вызывать аллергические реакции и недостаточной степенью очистки. Дело в том, что, поскольку гормон – это белковое вещество, оно состоит из определенного набора аминокислот.

Инсулин, вырабатываемый в организме свиньи, отличается по аминокислотному составу от инсулина человека на 1 аминокислоту, а инсулин быка – на 3.

В начале и середине 20 столетия, когда аналогичных препаратов не существовало, даже такой инсулин стал прорывом в медицине и позволил вывести лечение диабетиков на новый уровень. Гормоны, полученные таким методом, снижали сахар крови, правда, при этом они часто вызывали побочные эффекты и аллергию. Отличия в составе аминокислот и примеси в лекарстве сказывались на состоянии пациентов, особенно это проявлялось у более уязвимых категорий больных (детей и пожилых людей). Еще одна причина плохой переносимости такого инсулина – наличие его неактивного предшественника в лекарстве (проинсулина), избавиться от которого в данной вариации лекарства было невозможно.

В наше время существуют усовершенствованные свиные инсулины, которые лишены этих недостатков. Их получают из поджелудочной железы свиньи, но после этого поддают дополнительной обработке и очистке. Они являются многокомпонентными и содержат в своем составе вспомогательные вещества.


Модифицированный свиной инсулин практически ничем не отличается от человеческого гормона, поэтому его до сих пор используют на практике

Такие лекарства переносятся пациентами гораздо лучше и практически не вызывают побочных реакций, они не угнетают иммунитет и эффективно снижают сахар в крови. Бычий инсулин на сегодняшний день в медицине не используется, так как из-за своей чужеродной структуры он отрицательно влияет на иммунную и другие системы организма человека.

Генноинженерный инсулин

Человеческий инсулин, который применяется для диабетиков, в промышленном масштабе получают двумя способами:

  • с помощью ферментативной обработки свиного инсулина;
  • с использованием генномодифицированных штаммов кишечной палочки или дрожжей.

При физико-химическом изменении молекулы свиного инсулина под действием специальных ферментов становятся идентичными инсулину человека. Аминокислотный состав полученного препарата ничем не отличается от состава натурального гормона, который вырабатывается в организме людей. В процессе производства лекарство проходит высокую очистку, поэтому не вызывает аллергических реакций и других нежелательных проявлений.

Но чаще всего инсулин получают с помощью модифицированных (генетически измененных) микроорганизмов. Бактерии или дрожжи с помощью биотехнологических методов изменены таким образом, что могут сами производить инсулин.

Помимо самого получения инсулина, важную роль играет его очистка. Чтобы препарат не вызывал никаких аллергических и воспалительных реакций, на каждой стадии необходимо следить за чистотой штаммов микроорганизмов и всех растворов, а также используемых ингредиентов.

Существует 2 методики подобного получения инсулина. Первая из них основана на использовании двух разных штаммов (видов) какого-то одного микроорганизма. Каждый из них синтезирует только одну цепь молекулы ДНК гормона (всего их две, и они спирально закручены между собой). Затем эти цепи соединяются, и в полученном растворе уже можно отделить активные формы инсулина от тех, которые не несут никакого биологического значения.

Второй способ получения лекарства с помощью кишечной палочки или дрожжей основан на том, что микроб сначала производит неактивный инсулин (то есть его предшественник – проинсулин). Потом с помощью ферментативной обработки эту форму активируют и используют в медицине.


Персонал, который имеет доступ в определенные производственные помещения, всегда должен быть одет в стерильный защитный костюм, благодаря чему контакт препарата с биологическими жидкостями человека исключается

Все эти процессы обычно автоматизированы, воздух и все соприкасающиеся поверхности с ампулами и флаконами стерильны, а линии с оборудованием герметично закрыты.

Методы биотехнологии дают возможность ученым думать об альтернативных решениях проблемы сахарного диабета. Например, на сегодняшний день проводятся доклинические исследования производства искусственных бета-клеток поджелудочной железы, которые могут быть получены с помощью методов генной инженерии. Возможно, в будущем их будут использовать для улучшения функционирования этого органа у больного человека.


Производство современных – сложный технологический процесс, который предусматривает автоматизацию и минимальное вмешательство человека

Дополнительные компоненты

Производство инсулина без вспомогательных веществ в современном мире практически невозможно представить, ведь они позволяют улучшить его химические свойства, продлить время действия и достичь высокой степени чистоты.

По своим свойствам все дополнительные ингредиенты можно разделить на такие классы:

  • пролонгаторы (вещества, которые используются для обеспечения более длительного действия лекарства);
  • дезинфицирующие компоненты;
  • стабилизаторы, благодаря которым в растворе лекарства поддерживается оптимальная кислотность.

Пролонгирующие добавки

Существуют инсулины продленного действия, биологическая активность которых продолжается в течение 8 – 42 часов (в зависимости от группы препарата). Такой эффект достигается, благодаря добавлению в инъекционный раствор специальных веществ – пролонгаторов. Чаще всего с этой целью применяется одно из таких соединений:

  • белки;
  • хлористые соли цинка.

Белки, которые продлевают действие лекарства, проходят детальную очистку и являются низкоаллергенными (например, протамин). Соли цинка также не оказывают отрицательного влияния ни на активность инсулина, ни на самочувствие человека.

Антимикробные составляющие

Дезинфекторы в составе инсулина необходимы для того, чтобы при хранении и использовании в нем не размножалась микробная флора. Эти вещества являются консервантами и обеспечивают сохранность биологической активности лекарства. К тому же, если пациент вводит гормон из одного флакона только самому себе, то лекарства ему может хватить на несколько дней. За счет качественных антибактериальных компонентов у него не будет потребности выбрасывать неиспользованный препарат из-за теоретической возможности размножения в растворе микробов.

В качестве дезинфицирующих составляющих при производстве инсулина могут использоваться такие вещества:

  • метакрезол;
  • фенол;
  • парабены.


Если в растворе содержатся ионы цинка, они также выступают дополнительным консервантом из-за своих антимикробных свойств

Для производства каждого вида инсулина подходят определенные дезинфицирующие компоненты. Их взаимодействие с гормоном обязательно исследуют на этапе доклинических испытаний, поскольку консервант не должен нарушать биологическую активность инсулина или как-то по-другому отрицательно влиять на его свойства.

Использование консервантов в большинстве случаев позволяет вводить гормон под кожу без ее предварительной обработки спиртом или другими антисептиками (производитель обычно упоминает об этом в инструкции). Это упрощает введение лекарства и сокращает количество подготовительных манипуляций перед самой инъекцией. Но данная рекомендация работает только в случае введения раствора с помощью индивидуального инсулинового шприца с тонкой иглой.

Стабилизаторы

Стабилизаторы необходимы для того, чтобы pH раствора поддерживался на заданном уровне. От уровня кислотности зависит сохранность лекарства, его активность и стабильность химических свойств. При производстве инъекционного гормона для больных диабетом с этой целью обычно используют фосфаты.

Для инсулинов с цинком стабилизаторы растворов нужны не всегда, поскольку ионы металла помогают поддерживать необходимый баланс. Если же они все-таки применяются, то вместо фосфатов используют другие химические соединения, так как комбинация этих веществ приводит к выпадению осадка и непригодности лекарства. Важное свойство, предъявляемое ко всем стабилизаторам – безопасность и отсутствие возможности вступать в любые реакции с инсулином.

Подбором инъекционных лекарств при диабете для каждого конкретного пациента должен заниматься компетентный эндокринолог. Задача инсулина – не только удерживать нормальный уровень сахара в крови, но и не вредить другим органам и системам. Препарат должен быть нейтральным в химическом плане, низкоаллергенным и желательно доступным по цене. Довольно удобно также, если подобранный инсулин можно будет смешивать с другими его версиями по длительности действия.

Последнее обновление: Июнь 1, 2019

Инсулин – это гормон, который играет важнейшую роль в обеспечении нормального функционирования организма человека. Он вырабатывается клетками поджелудочной железы и способствует усвоению глюкозы, которая является главным источником энергии и основным питанием для мозга.

Но иногда в силу тех или иных причин секреция инсулина в организме заметно снижается либо прекращается вовсе, как при этом быть и чем помочь. Это приводит к тяжелому нарушению углеводного обмена и развитию такого опасного заболевания, как сахарный диабет.

Без своевременного и адекватного лечения эта болезнь может привести к серьезным последствиям, вплоть до потери зрения и конечностей. Единственным способом не допустить развития осложнений являются регулярные инъекции искусственно полученного инсулина.

Но из чего делают инсулин для диабетиков и как он воздействует на организм больного? Эти вопросы интересует многих людей с диагнозом сахарный диабет. Чтобы в этом разобраться необходимо рассмотреть все методы получения инсулина.

Разновидности

Современные препараты инсулина различаются по следующим признакам:

  • Источнику происхождения;
  • Продолжительности действия;
  • pH раствора (кислые или нейтральные);
  • Присутствием в составе консервантов (фенол, крезол, фенол-крезол, метилпарабен);
  • Концентрацией инсулина - 40, 80, 100, 200, 500 ЕД/мл.

Данные признаки оказывают влияние на качество препарата, его стоимость и степень воздействия на организм.

Источники

Уровень сахара

В зависимости от источника получения, препараты инсулина подразделяются на две основные группы:

Животные. Их получают из поджелудочных желез крупного рогатого скота и свиней. Они могут быть небезопасными, так как нередко вызывают серьезные аллергические реакции. Это особенно касается бычьего инсулина, который содержит три аминокислоты нехарактерные для человеческого. Свиной инсулин более безопасен, так как отличается всего на одну аминокислоту. Поэтому он чаще применяется в лечении сахарного диабета.

Человеческие. Они бывают двух видов: аналогичные человеческим или полусинтетические, получаемые из свиного инсулина путем ферментативной трансформации и человеческие или ДНК-рекомбинантные, которые производят бактерии кишечной палочки благодаря достижениям генной инженерии. Эти препараты инсулина совершенно идентичны гормону, вырабатывающемуся поджелудочной железой человека.

Сегодня в лечение сахарного диабета широко применяется инсулин как человеческого, так и животного происхождения. Современное производство животных инсулинов предполагает высочайшую степень очистки препарата.

Это помогает избавить его от таких нежелательных примесей, как проинсулин, глюкагон, соматостатин, белки, полипептиды, которые способны вызвать серьезные побочные действия.

Лучшим препаратом животного происхождения считается современный монопиковый инсулин, то есть произведенный с выделением «пика» инсулина.

Длительность действия

Производство инсулинов выполняется по разным технология, что позволяет получить препараты различной продолжительности действия, а именно:

  • ультракороткого действия;
  • короткого действия;
  • пролонгированного действия;
  • средней длительности действия;
  • длительного действия;
  • комбинированного действия.

Инсулины ультракороткого действия. Данные препараты инсулина отличаются тем, что начинают действовать сразу же после инъекции и достигают своего пика уже через 60-90 минут. Их общее время действия составляет не более 3-4 часов.

Существует два основных вида инсулина с ультракоротким действием – это Лизпро и Аспарт. Получение инсулина Лизпро выполняется путем перестановки в молекуле гормона двух аминокислотных остатков, а именно лизина и пролина.

Благодаря подобной модификации молекулы, удается избежать образования гексамеров и ускорить его распад на мономеры, а значит улучшить усвоение инсулина. Это позволяет получить инсулиновый препарат, который поступает в кровь больного в три раза быстрее естественного человеческого инсулина.

Другим инсулином ультракороткого действия является Аспарт. Способы получения инсулина Аспарта во многом схожи с производством Лизпро, только в этом случае пролин заменяется на отрицательно заряженную аспарагиновую кислоту.

Также, как и Лизпро, Аспарт быстро распадается на мономеры и поэтому почти мгновенно впитывается в кровь. Все препараты инсулина с ультракоротким действием разрешается вводить прямо перед едой или сразу после ее приема.

Инсулины короткого действия. Эти инсулины представляют собой буферные растворы с нейтральным pH (от 6,6 до 8,0). Их рекомендуется вводить, как , но в случае необходимости разрешается использовать внутримышечные инъекции или капельницы.

Данные инсулиновые препараты начинают действовать уже через 20 минут после попадания в организм. Их действие длится относительно недолго – не более 6 часов, и достигает своего максимума спустя 2 часа.

Инсулины короткого действия в основном производят для лечения больных сахарным диабетом в условиях стационара. Они эффективно помогают пациентам с диабетической комой и прикомой. Кроме того, они позволяют наиболее точно определить необходимую дозу инсулина для больного.

Инсулины средней длительности действия. Эти препараты растворяются гораздо хуже, чем инсулины короткого действия. Поэтому они медленнее поступают кровь, что заметно увеличивает их гипогликемическое действие.

Получение инсулина средней длительности действия достигается путем введения в их состав особого пролонгатора — цинка или протамина (изофан, протафан, базал).

Такие инсулиновые препараты выпускаются в виде суспензий, с определенным количеством кристаллов цинка или протамина (чаще всего протамина Хагедорна и изофана). Пролонгаторы значительно увеличивают время всасывания препарата из подкожной клетчатки, что заметно увеличивает время поступления инсулина в кровь.

Инсулины длительного действия. Это наиболее современный инсулин получение которого стало возможно благодаря развитию ДНК-рекомбинантной технологии. Самым первым инсулиновым препаратом длительно действия стал Гларгин, который является точным аналогом гормона, вырабатываемого поджелудочной железой человека.

Для его получения проводится сложная модификация молекулы инсулина, предполагающая замену аспарагина на глицин и последующее присоединение двух остатков аргинина.

Гларгин выпускается в виде прозрачного раствора с характерным для него кислым рН 4. Такой рН позволяет сделать гексамеры инсулина более устойчивыми и тем самым обеспечить продолжительное и предсказуемое всасывание препарата в кровь больного. Однако из-за кислого рН Гларгин не рекомендуется комбинировать с инсулинами короткого действия, которые как правило обладают нейтральным рН.

Большинство инсулиновых препаратов имеют так называемый «пик действия», при достижении которого в крови пациента наблюдается наибольшая концентрация инсулина. Однако главная особенность Гларгина заключается в том, что у него нет явного пика действия.

Всего одной инъекции препарата в день достаточно для обеспечения больному надёжного беспикового гликемического контроля на последующие 24 часа. Это достигается благодаря тому, что Гларгин всасывается из подкожной клетчатки с одинаковой скоростью на протяжении всего периода действия.

Инсулиновые препараты длительного действия производятся в различных формах и могут обеспечить больному гипогликемический эффект до 36 часов подряд. Это помогает значительно снизить число инъекций инсулина в день и тем самым заметно облегчить жизнь больных диабетом.

Комбинированные препараты. Эти препараты выпускаются в форме суспензии в состав которой входит нейтральный раствор инсулина с коротким действием и инсулины среднего действия с изофаном.

Такие препараты позволяют больному вводить в свой организм инсулины различной продолжительности действия с помощью всего одной инъекции, а значит избежать дополнительных уколов.

Обеззараживание препаратов инсулина имеет огромное значение для безопасности больного, так как они вводятся в его организм инъекционно и с кровотоком разносятся по всем внутренним органам и тканям.

Определенным бактерицидным действием обладают некоторые вещества, которые добавляются в состав инсулина не только как обеззараживающее средство, но и в качестве консервантов. К ним относится крезол, фенол и метилпарабензоат. Кроме того, выраженное антимикробное действие также характерно и для ионов цинка, которые входят в состав некоторых инсулиновых растворов.

Многоуровневая защита от бактериальной инфекции, которая достигается путем добавления консервантов и других антисептических средств, позволяет предупредить развитие многих тяжелых осложнений. Ведь многократное введение иглы шприца во флакон с инсулином могло бы стать причиной заражения препарата болезнетворными бактериями.

Однако бактерицидные свойства раствора помогают уничтожить вредоносные микроорганизмы и сохранить его безопасность для пациента. По этой причине больные сахарным диабетом могут использовать один и тот же шприц для выполнения подкожных инъекций инсулина до 7 раз подряд.

Еще одно преимущество наличия консервантов в составе инсулина – это отсутствие необходимости обеззараживать кожу перед уколом. Но это возможно лишь при использование специальных инсулиновых шприцов, оснащенных очень тонкой иглой.

Необходимо подчеркнуть, что присутствие консервантов в инсулине не оказывает негативного влияния на свойства препарата и совершенно безопасно для больного.

Вывод

На сегодняшний день инсулин, получаемый как с использованием поджелудочных желез животных, так и современных методов генной инженерии, широко применяется для создания большого числа препаратов.

Наиболее предпочтительными для ежедневной инсулинотерапии являются высокоочищенные ДНК-рекомбинантные человеческие инсулины, которые отличаются наиболее низкой антигенностью, а значит практически не вызывают аллергических реакций. Кроме того, высоким качеством и безопасностью обладают препараты, созданные на основе аналогов человеческого инсулина.

Инсулиновые препараты реализуются в стеклянных флаконах различной емкости, герметично закрытых резиновыми пробками и покрытых обкаткой из алюминия. Помимо этого, их можно приобрести в специальных инсулиновых шприцах, а также шприц-ручках, которые особенно удобны для детей.

В настоящее время разрабатываются принципиально новые формы инсулиновых препаратов, которые будут вводится в организм интраназальным способом, то есть через слизистую носа.

Как было установлено, сочетая инсулин с детергентом можно создать аэрозольный препарат, который достигал бы необходимой концентрации в крови больного столь же быстро, как и при внутривенной инъекции. Кроме того, создаются новейшие пероральные инсулиновые препараты, которые можно будет принимать через рот.

На сегодняшний день данные виды инсулинов пока еще находятся либо на стадии разработки, либо проходят необходимые клинические тесты. Однако совершенно очевидно, что в скором будущем появятся препараты инсулина, которые не нужно будет вводить при помощи шприцов.

Новейшие инсулиновые средства будут выпускаться в виде спреев, которыми необходимо будет просто брызнуть на слизистую поверхность носа или рта, чтобы полностью удовлетворить потребность организма в инсулине.

Препарат, позволяющие сдерживать течение сахарного диабета, одновременно снижая уровень глюкозы в крови, был изобретен в 20-х гг. XX столетия при совместной работе Ф. Бантинга, Дж. Маклеода, Ч. Беста. В основе изобретения лежало изучение механизма действия специфического белка поджелудочной железы, выделенного из островков Лангерганса, на сахар в крови.

Когда появился и кто придумал инсулин?

Инсулинотерапия еще с 1921 г. является самым эффективным мероприятием при лечении сахарного диабета I типа. Именно в этом году физиолог из Канады Фредерик Бантинг совместно со своим 22-летним ассистентом Чарльзом Бестом представил на всеобщее обозрение новый препарат, разработанный на базе лаборатории Дж. Маклауда - инсулин. В первое время, после того как препарат придумали его называли «айлетином».

Изобрести вещество оказалось недостаточно: необходимо было научиться его досконально очищать от сторонних компонентов. С этой целью к работе над айлетином был привлечен биохимик Джеймс Коллип, который изобрел новый и эффективный метод очистки инсулина. Но на этом его деятельность и закончилась, так как Коллип не сработался с Бантингом и их пути разошлись.

Первые экспериментальные исследования прошли на собаках и только после того, как обе попытки оказались успешными, препарат был тестирован на Леонарде Томпсоне, который в свои 14 лет болел диабетом. Но из-за ошибок во время дистилляции попытка оказалась неудачной и только со второго раза, когда Коллип усовершенствовал свою работу, результат был ошеломляющим: не возникло не только проблем, но и побочных эффектов.


Инсулин был самым эффективным лекарством еще в 1921 г.

Если излагать кратко, после того как изобрели первый инсулин и результат работы Бангтинга с Маклаудом был закреплен, ученые выступили с докладом на съезде Американской ассоциации врачей, где и представили официально инсулин. Через 18 месяцев, в 1923 г., Бангтинг и Маклауд получают Нобелевскую премию в области медицины и физиологии, которая стала «яблоком раздора» между коллегами, так по мнению Бантинга, Маклауд сильно преувеличивал свой вклад в создание препарата. Чтобы уладить конфликт, Бантинг делит половину своей награды с Бестом, а Маклауд - с Коллиппом.

Но на этом исследования инсулина не закончатся. Через 35 лет (в 1958 г.) Нобелевскую премию получит Фредерик Сенгер, аглийский биолог, за разработку точного химического состава инсулина. Его последовательницей станет Дороти Кроуфт Ходжкин. Она изучит пространственное строение молекул инсулина, используя способ рентгеновской дифракции (процесс огибания волнами) в 1990 г., что позволит усовершенствовать препарат.

Инсулин – (от лат. insula – остров) – гормон пептидной природы, он образуется в бета-клетках островков Лангерганса поджелудочной железы. Молекула инсулина состоит из двух полипептидных цепей, которые включают 51 аминокислотный остаток: A-цепь состоит из 21 аминокислотного остатка, B-цепь образована 30 аминокислотными остатками. Полипептидные цепи соединяются двумя дисульфидными мостиками через остатки цистеина, третья дисульфидная связь находится в A-цепи.

Первичная структура инсулина у разных биологических видов имеет некоторые различия, точно так же, как отличается его роль в регуляции обмена углеводов. Больше всего схож с человеческим инсулин свиньи, они отличаются одним аминокислотным остатком: в 30 положении B-цепи свиного инсулина находится аланин, а в инсулине человека – треонин; бычий инсулин отличается на три аминокислотных остатка.

Цепи соединяются друг с другом посредством двух дисульфидных мостиков (получается, что каждый образован двумя атомами серы), а третий дисульфидный мостик выступает связующим звеном отдаленных друг от друга аминокислот А-цепи. Соединенные цепи немного изгибаются и сворачиваются в глобулярную структуру, именно такая конфигурация молекулы гормона важна для проявления его биологической активности.

Существенно влияет на обмен почти во всех тканях. По своей химической структуре данное соединение находится где-то между полипептидами и белками. Инсулин образуется в поджелудочной железе животных и человека. В бета-клетках поджелудочной железы инсулин образуется из предшественника - проинсулина, полипептида из 84 аминокислотных остатков, у которых не наблюдается грмональная активность. Инсулин – это специфическое средство, которому свойственно понижать сахар, также он регулирует углеводный обмен; влияет на усиление усвоения тканями глюкозы и помогает ей превратиться в гликоген, также облегчает проникновение глюкозы в клетки тканей. У инсулина наблюдается не только гипогликемическое влияние, он оказывает ряд других эффектов: влияет на повышение запасов гликогена в мышцах, оказывает стимулирующий эффект на синтез пептидов, снижает расход белка. В некоторых видах спорта данный препарат ценят благодаря тому, что у него наблюдается выраженный анаболический эффект.

Историческая справка

Главная функция инсулина состоит в обеспечении клеток организма важным энергетическим материалом – глюкозой.

В том случае, если наблюдается нехватка инсулина, клетки не имеют возможности усваивать глюкозу, идет процесс накопления в крови, а ткани и органы подвержены энергетическому голоданию. При нехватке инсулина может начать развиваться очень серьезное заболевание (сахарный диабет).

До начала XX в. больные сахарным диабетом умирали в детском или молодом возрасте, в связи с развитием осложнений, вызванных болезнью, почти никто не жил больше 5–7 лет после начала болезни.

О том, какую роль играет поджелудочная железа в развитии сахарного диабета, узнали только в конце XIX в. В 1869 г. в Берлине 22-летний Поль Лангерганс, будучи на то время студентом-медиком, проводил исследования с помощью микроскопа строения поджелудочной железы. Он заметил неизвестные клетки, которые создавали группы, равномерно распределенные по всей железе. Несмотря на это, функция этих клеток, которые потом назвали в честь студента островками Лангерганса, продолжала быть не изученной.

Некоторое время спустя Эрнст Лако выдвинул гипотезу о том, что поджелудочная железа участвует в процессах пищеварения. В 1889 г. немецкий физиолог Оскар Минковски попытался доказать, что данное утверждение не имеет ничего общего с реальностью. С этой целью он поставил эксперимент, в ходе которого удалил железу у здоровой собаки. Спустя пару дней после начала эксперимента помощник Минковски, который следил за состоянием лабораторных животных, заметил то, что на мочу подопытной собаки слеталось очень много мух.

Провели исследование мочи, в ходе которого было обнаружено, что собака, у которой отсутствует поджелудочная железа, вместе с мочой выделяет сахар. Это было первое наблюдение, свидетельствующее о том, что существует некая связь между работой поджелудочной железы и развитием сахарного диабета. В 1901 г. Евген Опи доказал, что сахарный диабет развивается вследствие нарушений в структуре поджелудочной железы (полным или частичным разрушением островков Лангерганса).

Первым человеком, выделившим инсулин и успешно применяющим его для лечения больных, стал канадский физиолог Фредерик Бантинг. Он пытался создать лекарство от диабета в связи с тем, что двое его друзей умерли от данной болезни. Еще до этого многие исследователи, которые поняли роль поджелудочной железы в развитии сахарного диабета, делали попытки выделить вещество, влияющее именно на уровень сахара крови. К сожалению, все попытки заканчивались неудачно.

Это было связано частично с тем, что ферменты поджелудочной железы (в основном трипсин) успевали хотя бы частично разложить белковые молекулы инсулина до того, как их удавалось выделить из экстракта тканей железы. В 1906 г. Георг Людвиг Зэльцер смог достичь определенного успеха в снижении уровня глюкозы в крови подопытных собак прибегая к помощи панкреатического экстракта, но ему не удалось продолжить свою работу. Скотт в 1911 г. в Чикагском университете работал с водным экстрактом поджелудочной железы, он заметил небольшое уменьшение гликозурии у подопытных животных. В связи с тем, что руководителя проекта не удалось убедить в важности проводимых исследований, их остановили.

Такого же эффекта достиг Израэль Кляйнер в 1919 г., он не смог закончить свою работу, так как началась Первая мировая война.

Схожую работу в 1921 г. опубликовал профессор физиологии Румынской школы медицины Никола Паулеско. Многие исследователи не только в Румынии полагают, что первооткрывателем инсулина был именно этот ученый. Несмотря на это, заслуга выделения инсулина, а также его успешного использования принадлежит именно Фредерику Бантингу.

Бантинг работал младшим преподавателем на кафедре анатомии и физиологии в канадском университете, его руководителем был профессор Джон Маклеод, которого в то время принимали за большого специалиста в вопросах, касающихся диабета. Бантинг пытался добиться атрофии поджелудочной железы прибегая к перевязке ее выводных протоков (каналов) на 6–8 недель, сохранив при этом островки Лангерганса неизмененными от воздействия ферментов поджелудочной железы, и получить чистый экстракт клеток этих островков.

Для проведения этого эксперимента необходима была лаборатория, помощники и подопытные собаки, этого всего у Бантинга не было.

За помощью он обратился к профессору Джону Маклеоду, который хорошо знал о всех прежних неудачах с получением гормонов поджелудочной железы. В связи с этим, он сначала отказал Бантингу. Несмотря на это, Бантинг продолжал упорствовать и весной 1921 г. снова попросил Маклеода дать разрешение поработать в лаборатории хотя бы два месяца. В связи с тем, что именно тогда Маклеод планировал поехать в Европу, соответственно, лаборатория была свободной, он дал свое согласие. В качестве помощника Бантингу дали студента 5-го курса Чарльза Беста, который хорошо разбирался в методах определения сахара в крови и моче.

Для того, чтобы провести эксперимент, требующий больших расходов, Бантинг продал почти все, что у него было.

Нескольким собакам перевязали протоки поджелудочной железы и стали дожидаться ее атрофии. 27 июля 1921 г. собаке, у которой отсутствовала поджелудочная железа, и которая находилась в прекоме, ввели экстракт атрофированной поджелудочной железы. Спустя несколько часов у собаки отмечалось снижение уровня сахара в крови и моче, исчез ацетон.

Затем экстракт поджелудочной железы ввели во второй раз, и она прожила еще 7 дней. Вполне вероятно, что удалось бы продлить жизнь собаки еще на какой-то время, но у исследователей закончился запас экстракта. Это было связано с тем, что получение инсулина из поджелудочных желез собак – очень трудоемкая и длительная работа.

Далее Бантинг и Бест начали добывать экстракт из поджелудочной железы еще не рожденных телят, у которых еще не начали вырабатываться пищеварительные ферменты, но уже производилось достаточное количество инсулина. Количества инсулина теперь было достаточно для того,чтобы поддерживать жизнь подопытной собаки уже до 70 дней. К тому времени Маклеод вернулся из Европы и понемногу стал интересоваться работой Бантинга и Беста, он принял решение подключить к ней весь персонал лаборатории. Бантинг с самого начала назвал полученный экстракт поджелудочной железы ислетином, но потом прислушался к предложению Маклеода и переименовал его в инсулин (от лат. insula – «остров»).

Исследования по получению инсулина успешно продолжались. 14 ноября 1921 г. Бантинг и Бест сделали сообщение о результатах своих исследований на заседании клуба «Физиологического журнала» университета Торонто. Спустя месяц они рассказали о своих успехах в Американском физиологическом обществе в Нью-Хейвене.

Количество экстракта, который получали из поджелудочных желез крупного рогатого скота, забитого на бойне, стало быстро увеличиваться, необходим был специалист для обеспечения тонкой очистки инсулина. Для этого в конце 1921 г. Маклеод пригласил к работе известного биохимика Джеймса Коллипа, он очень быстро добился хороших результатов по очистке инсулина. К январю 1922 г. Бантинг и Бест решили начать первые клинические испытания инсулина на человеке.

Сначала ученые ввели по 10 условных единиц инсулина друг другу, а уже потом – добровольцу. Им стал 14-летний мальчик Леонард Томпсон, который болел сахарным диабетом. Первую инъекцию ему сделали 11 января 1922 г., но она была не совсем удачной. Причиной этому было то, что экстракт недостаточно очистили, начала развиваться аллергия. Следующие 11 дней Коллип упорно работал в лаборатории с целью улучшения экстракта, уже 23 января мальчику сделали вторую инъекцию инсулина.

После ввода инсулина мальчик стал быстро идти на поправку – он был первым человеком, который выжил благодаря инсулину. Некоторое время спустя Бантинг спас от неминуемой смерти своего друга – врача Джо Джилькриста.

Весть о том, что инсулин впервые успешно применили 23 января 1922 г. очень быстро стала международной сенсацией. Бантинг и его коллеги практически воскрешали сотни больных диабетом, особенно с тяжелыми формами. Люди присылали очень много писем с просьбами об излечении, некоторые приезжали непосредственно в лабораторию. Несмотря на все это, на тот момент существовало очень много недостатков – препарат инсулина еще не стандартизировали, средств самоконтроля не было, и вводимые дозы отмеряли грубо, на глаз. В связи с этим, часто происходили гипогликемические реакции организма, когда уровень глюкозы падал ниже нормы.

Несмотря на все это, продолжались усовершенствование внедрение инсулина в повседневную врачебную практику.

Университет Торонто начал продажу фармацевтическим компаниям лицензии на производство инсулина, уже к 1923 г. он стал доступен всем больным сахарным диабетом.

Разрешение на производство лекарства получили компании «Лили» (США) и «Ново Нордиск» (Дания), они и сейчас являются лидерами в этой области. Бантингу в 1923 г. университет Торонто присвоил степень доктора наук, его избрали профессором. Помимо этого было принято решение открыть отделения медицинских специальных исследований для Бантинга и Беста, им назначили высокие персональные оклады.

В 1923 г. Бантингу и Маклеоду присудили Нобелевскую премию по физиологии и медицине, которую они на добровольных началах разделили с Бестом и Коллипом.

В 1926 г. ученый-медик Абель синтезировал синтезировать инсулин в кристаллическом виде. Спустя 10 лет датский исследователь Хагедорн добыл инсулин пролонгированного (продленного) действия, а еще спустя 10 лет создал нейтральный протамин Хагердона, он до сих пор является одним из наиболее популярных видов инсулина.

Химический состав инсулина установил британский молекулярный биолог Фредерик Сенгер, которому присвоили в 1958 г. за это Нобелевскую премию. Инсулин стал первым белком, последовательность аминокислот которого полностью расшифровали.

Пространственное строение молекулы инсулина установили с помощью метода рентгеновской дифракции в 1990-х гг. Дороти Кроуфт Ходжкин, ее также наградили Нобелевской премией.

После того, как Бантинг добыл бычий инсулин, исследовали инсулин, полученный из поджелудочных желез свиней и коров, а также других животных (например, китов и рыб).

Молекула человеческого инсулина состоит из 51 аминокислоты. Свиной инсулин отличается только одной аминокислотой, коровий – тремя, но это не мешает им нормализовать уровень сахара вполне хорошо. Несмотря на это, у инсулина животного происхождения существует большой недостаток – у большей части больных он становится причиной аллергической реакции. В связи с этим требовались дальнейшие работы по усовершенствованию инсулина. В 1955 г. расшифровали структуру человеческого инсулина, и приступили к работам по его выделению.
Впервые это сделали в 1981 г. американские ученые Жильбер и Ломедико. Некоторое время спустя появился инсулин, который получили из пекарских дрожжей методом генной инженерии. Инсулин стал первым из человеческих белков, который синтезировали в 1978 г. генетически модифицированной бактерией Е. coli. С этого момента в биотехнологии началась новая эпоха. Начиная с 1982 г. американская компания «Генентех» выпускает человеческий инсулин, который синтезировали в биореакторе. Он не приводит к появлению аллергических реакций.

Фармакологическое действие (по данным производителя)

Инсулин является средством, которое понижает сахар и обладает способностью регулировать углеводный обмен; усиливает усвоение тканями глюкозы и способствует ее превращению в гликоген, кроме этого облегчает проникновение глюкозы в клетки тканей.

Помимо оказания гипогликемического действия (понижения уровня сахара в крови), инсулин имеет несколько других эффектов: повышает запасы гликогена в мышцах, стимулирует синтез пептидов, снижает расход белка и др.

Влияние инсулина сопровождается стимуляцией или ингибированием (подавлением) некоторых ферментов; стимулируются гликогенсинтетаза, пируватдегидрогеназа, гексокиназа; ингибируются липаза, которая активирует жирные кислоты жировой ткани, липопротеиновая липаза, снижающая "помутнение" сыворотки крови после приема пищи, насыщенной жирами.

Степень биосинтеза и секреции (выделения) инсулина находится в зависимости от содержания глюкозы в крови. При повышении ее концентрации усиливается секреция инсулина поджелудочной железой; снижение концентрации глюкозы в крови замедляет секрецию инсулина.

Действие инсулина напрямую связано с его взаимодействием со специфическим рецептором, который находится на плазматической мембране клетки, и образование инсулинрецепторного комплекса. Инсулиновый рецептор вместе с инсулином проникает в клетку, там влияет на процессы фосфолирования клеточных белков; механизм действия дальнейших внутриклеточных реакций до конца не известен.

Активность инсулина определяют биологическим путем (по способности понижать концентрацию глюкозы в крови у здоровых кроликов) и одним из физикохимических методов (методом электрофореза на бумаге или методом хроматографии на бумаге). За одну единицу действия (ЕД), или интернациональную единицу (ИЕ), принимают активность 0,04082 мг кристаллического инсулина.

Метаболические эффекты инсулина

  1. Улучшает поглощение клетками глюкозы и других веществ;
  2. Активирует основные ферменты гликолиза;
  3. Увеличивает интенсивность синтеза гликогена – инсулин форсирует запасание глюкозы клетками печени и мышц с помощью полимеризации её в гликоген;
  4. Снижает интенсивность глюконеогенеза – уменьшается создание в печени глюкозы из различных веществ неуглеводной природы (белков и жиров).

Анаболическое действие инсулина

  • Влияет на усиление поглощения клетками аминокислот (особенно лейцина и валина);
  • Улучшает передвижение в клетку ионов калия, а также магния и фосфата;
  • Влияет на усиление репликации ДНК и биосинтеза белка;
  • Усиливает синтез жирных кислот и дальнейшую их этерификацию – в жировой ткани и в печени
  • Стимулирует превращение глюкозы в триглицериды; при нехватке инсулина происходит обратное – мобилизация жиров.

Антикатаболическое действие инсулина

  1. Угнетает гидролиз белков – снижает деградацию белков;
  2. Уменьшает липолиз – снижает поступление жирных кислот в кровь.

Виды используемого инсулина в бб

Инсулин короткого действия

Короткий инсулин начинает действовать в случае подкожного ввода через 30 минут (в связи с этим вводят за 30-40 минут до еды), максимум действия приходится через 2 часа, исчезает из организма через 5-6 часов.

Лучший выбор

  • Хумулин Регуляр
  • Актрапид HМ

Инсулин ультракороткого действия

Ультракороткий инсулин начинает действовать через 15 минут, максимум через 2 часа, исчезают из организма через 3-4 часа. Он физиологичнее, его можно вводить прямо перед приёмом пищи (за 5-10 минут) или сразу после еды.

Лучший выбор

  • Инсулин лизпро (Хумалог) – полусинтетический аналог человеческого инсулина.
  • Инсулин аспарт (НовоРапид Пенфилл, НовоРапид ФлексПен).
  • Инсулин глулизин (Хумалог)

Преимущества и недостатки инсулина

Преимущества

  • Маленькая стоимость курса
  • Широкая доступность - препарат можно без проблем купить в аптеке
  • Высокое качество – подделки почти на встречаются, в отличии от стероидов
  • Отсутствует токсичность, малая вероятность возникновения побочных эффектов, почти полное отсутствие последствий курса
  • Малый феномен отката
  • Обладает выраженным анаболическим действием
  • Можно комбинировать с анаболическими стероидами и другими средствами
  • Отсутствует андрогенное воздействие

Недостатки

  • Сложная схема приема
  • Происходит значительная прибавка жира
  • Гипогликемия

Приём инсулина

  1. Данный курс идеален для набора 5-10 кг мышечной массы на протяжении 1-2 месяцев, далее необходимо сделать перерыв не меньше двух месяцев, чтобы восстановить собственную секрецию.
  2. Изучите механизм действия инсулина, в том числе меры борьбы с гипогликемией.
  3. Начинать курс следует с дозы 10 ЕД подкожно, со временем (1 раз в день или через день) увеличивайте дозировку на 2 ЕД.
  4. С особой внимательностью отслеживайте реакцию организма на увеличение дозы!
  5. Далее можно увеличить дозу до 15-20 ЕД, большие дозы не рекомендуются (стоит отметить, что это зависит от чувствительности тканей к инсулину, некоторые спортсмены отлично переносят 50-60 ЕД инсулина и только при приеме таких доз растут, но это можно выяснять только постепенно увеличивая дозы).
  6. Следует отметить, что инсулиновые шприцы имеют различные шкалы. Шприцы U-40 используют для инъекций инсулина, содержащего 40 единиц в 1 мл. Шприцы U-100 внешне очень напоминают U-40, но их применяют для препаратов с содержанием 100 единиц инсулина в 1 мл.
  7. Частоту инъекций можно изменять, но наиболее щадящим считают прием через день. Лучше выполнять инъекции сразу после тренировки (но только тогда, когда тренировка заканчивается не поздно вечером в случае потребления инсулина короткого действия, если необходимо принять инсулин после тренировки вечером, это должен быть инсулин ультракороткого действия, в связи с тем, что он работает всего 3 часа и успеет перестать работать до сна), так как сразу после нее должен следовать обильный прием пищи, для обеспечения поставки углеводов в кровь. Помимо этого, инсулин имеет свойство угнетать катаболические процессы, вызванные физическим стрессом во время тренинга. Продолжительность курса при таком режиме составляет 2-2,5 месяца.
  8. Можно выполнять инъекции каждый день и даже 2 раза в день, но тогда продолжительность курса следует сократить до 1,5-2 месяцев.
  9. Если применяете инсулин ультракороткого действия, то делать инъекцию надо непосредственно после обильного приема пищи, богатого углеводами.
  10. Если применяете инсулин короткого действия, делать инъекцию надо за 30 минут до обильного приема пищи, богатого углеводами.
  11. На 1 ЕД инсулина, следует принимать 6 г углеводов.
  12. Делайте инъекции в разные места, чтобы избежать липодистрофии (неровности в подкожно-жировой клетчатке).
  13. Для успешного прохождения курса следует соблюдать высококалорийную диету, проводить силовые тренировки, а также употреблять спортивное питание для набора массы.

Меры предосторожности

  1. Начинать курс следует с небольшой дозы - 5-10 ЕД, для проверки реакции организма.
  2. Выполняйте только подкожные инъекции
  3. Не делайте инъекции перед тренировкой
  4. Не делайте инъекции сразу перед сном
  5. После инъекции следует обеспечить организм углеводами (у здорового человека сахар в крови натощак колеблется от 3 до 5,5 ммоль/л. Каждая единица инсулина снижает сахар крови на 2,2 ммоль/л. Если уколоть 20 единиц инсулина ультракороткого действия, может развиться гипогликемия.
  6. В эндокринологии (куда относится инсулин) есть такое понятие, как "хлебная единица". Вне зависимости от вида и количества продукта, не важно, что это, одна хлебная единица содержит 12-15 граммов усвояемых углеводов. Она повышает уровень сахара в крови на одну и ту же величину - 2,8 ммоль/л – ей надо для усвоения организмом примерно 1,5-2 единицы инсулина. Более широко об этой мере исчисления можно узнать в интернете.
  7. Теперь посчитаем. На 20 единиц инсулина следует принять 10-15 хлебных единиц, это равно 120-150 г чистых углеводов. К примеру, пусть будет 300-450 грамм белого хлеба.

Побочные действия инсулина

  • Гипогликемия или уменьшение содержания глюкозы в крови, это приводит ко всем остальным проявлениям. Гипогликемию можно без проблем предотвратить
  • Зуд в области укола
  • Аллергия наблюдается очень редко
  • Уменьшение эндогенной секреции инсулина бывает только на длительных курсах, когда используют высокие дозы инсулина
  • Инсулин НЕ ОКАЗЫВАЕТ токсического влияния на печень или почки, он НЕ ВЫЗЫВАЕТ нарушений половой функции (потенции).

Показания к лекарственному применению инсулина

Сахарный диабет.

В небольших дозах (5–10 ЕД) инсулин применяют при заболеваниях печени (гепатиты, начальные стадии цирроза), при ацидозе, истощении, упадке питания, фурункулёзе, при тиреотоксикозе.

В психоневрологической практике инсулин используют при алкоголизме, при истощении нервной системы (в дозах, которые влекут гипогликемическое состояние).

В психиатрии – для инсулинокоматозной терапии (при лечении некоторых форм шизофрении вводят раствор инсулина в больших количествах, которые при постепенном увеличении доз вызывают гипогликемический шок).

В дерматологии инсулин применяется при диабетической токсидермии, как неспецифическое средство – при экземе, угревой сыпи, крапивнице, псориазе, хронических пиодермиях и дрожжевых поражениях.

Противопоказания к медицинскому применению

Острый гепатит, панкреатит, нефрит, почечнокаменная болезнь, язвенная болезнь желудка и двенадцатиперстной кишки, декомпенсированный порок сердца.

Современное биотехнологическое производство инсулина представляет собой сложный процесс, основанный на генетическом изменении микроорганизмов. Этот метод сравнительно новый и внедрен в производство в восьмидесятые годы прошлого столетия. С его помощью получают препарат, полностью соответствующий тому, что вырабатывается в организме человека. Отсюда и название «человеческий инсулин».

Следует отметить, что этот термин «человеческий инсулин» иногда вызывает несколько неверные реакции и предположения, что лекарственный препарат получают из организма человека. Именно по этой причине так часто задается вопрос: « Как производят инсулин?» - и откуда появилось такое определение.

Действительно, до недавнего времени технология производства инсулина была совершенно другой. Его извлекали из организма свиней или крупного рогатого скота и называли соответственно, например, свиным или бычьим. Однако, эта технология производства устарела и имеет ряд серьезных недостатков, среди которых первое место занимает невозможность получения чистого вещества без примесей проинсулина, вызывающего у человека различные аллергические реакции и выработку антител.

К тому же в связи с постоянным ростом количества заболевших сахарным диабетом, животного сырья для производства инсулина не хватает, что и стало еще одним толчком для поиска современных новых методик его получения искусственным путем.

На сегодняшний день человеческий или рекомбинированный препарат получают из штаммов дрожжей или кишечной палочки. Эти вещества выбраны не случайно: во время своего роста в питательной среде они вырабатывают огромное количество необходимого гормона. Это значит, что процесс носит не только технологический характер, но и биологический, ведь нужное вещество производится живыми организмами, а затем преобразовывается, а не синтезируется химическим путем.

Следует отметить, что наука проделала сложный и трудный путь, прежде чем был найден и внедрен в производство биотехнологический способ получения лекарства для диабетиков. Впервые точный состав инсулина, вырабатываемого человеком, был установлен в шестидесятые годы прошлого столетия. Выяснилось, что его молекулы имеют иной состав аминокислоты, отличный от аминокислоты животного происхождения. Позже были предприняты попытки замены одной аминокислоты на другую, к слову, вполне успешные, но очень дорогостоящие. Этот метод был признан нерентабельным и бесперспективным не только в нашей стране, но и за рубежом.

И только через два десятилетия упорного труда удалось получить абсолютно чистый препарат, полностью соответствующий тому, что вырабатывается в организме здорового человека, не вызывающий отторжения и аллергических реакций.

Производство человеческого инсулина основано на методе генной инженерии, в ходе которого в молекулу ДНК дрожжей встраивается ген, определяющий выработку гормона, полностью схожего с тем, что вырабатывается человеком. Этот метод широко используется во всех развитых странах мира и позволяет получать препараты для лечения диабета превосходного качества и в нужном количестве.

Собственное производство инсулина в России планируется в ближайшее время. Уже ведется строительство цеха на Урале. Однако в настоящее время препараты для лечения больных сахарным диабетом закупаются за границей, на что тратятся огромные суммы из бюджета страны.

Следует отметить, что технология его производства уже опробована в России опытным путем и при этом получены прекрасные результаты. Наши, отечественные препараты оказались более эффективными и чистыми. Осталось только наладить производственный процесс.

Отзывы и комментарии

Оставить отзыв или комментарий

Не менее полезные материалы по теме:

Форма выпуска

Инсулин - это лекарственный препарат, обладающий способностью понижать уровень глюкозы, при его отклонении от нормы, и регулировать процесс усвоения углеводов организмом. Он незаменим при лечении диабета, а при правильно подобранной дозе и своевременно начатой терапии позволяет заболевшим людям вести полноценную жизнь....

Катриджы

Инсулин в картриджах предназначен для введения с помощью, так называемых, шприцев-ручек, получивших свое название благодаря внешнему сходству с автоматической перьевой ручкой. Шприц ручка позволяет дозировать количество вводимого препарата, что в значительной мере упрощает жизнь больных сахарным диабетом. При этом не нужно...

В ампулах

Инсулин это гормон поджелудочной железы. Для производства лекарственных препаратов на его основе используют органы животных, а также биотехнологии, позволяющие получать вещества, аналогичные гормонам человека. Характерной особенностью инсулина является его неустойчивость к воздействию ферментов, содержащихся в пищеварительном тракте. Это значит, что инсулиновые...

Таблетки вместо инсулина

Инсулин это гормон. Он вырабатывается в здоровой поджелудочной железе. Диабет возникает в том случае, если поджелудочная железа больна, или просто не справляется со своими функциями. На сегодняшний день лечение диабета основано на введении в организм больного гормона, полученного искусственным...

Кто изобрел инсулин?

Открытие инсулина произошло в 1922 году. Именно тогда тяжело больному сахарным диабетом мальчику был введен препарат, полученный из поджелудочной железы быка. В результате удалось не только спасти жизнь, но и остановить прогрессирующий недуг. В самой истории инсулина не обошлось без чудес,...

Формула и структура инсулина

Строение инсулина интересовало ученых с момента его открытия. Многочисленные опыты в этом направлении были начаты еще его первооткрывателями Фредериком Бантингом и Чарльзом Бестом. При этом ученые пытались установить точную химическую формулу выделенного гормона, что позволило бы синтезировать его химическим путем. Забегая...


Close