Или катаптрические) - в качестве объектива используется вогнутое зеркало .

  • Зеркально-линзовые телескопы (катадиоптрические) - в качестве объектива используется сферическое зеркало , а линза , система линз или мениск служит для компенсации аберраций .
  • Характеристики [ | ]

    • Разрешающая способность телескопа зависит от диаметра объектива. Предел разрешения накладывает явление дифракции - огибание световыми волнами краёв объектива, в результате чего вместо изображения точки получаются кольца. Для видимого диапазона он определяется по формуле
    r = 140 D {\displaystyle r={\frac {140}{D}}} ,

    где r {\displaystyle r} - угловое разрешение в угловых секундах, а D {\displaystyle D} - диаметр объектива в миллиметрах. Эта формула выведена из определения предела разрешения двух звёзд по Рэлею . Если использовать другие определения предела разрешения, то численный коэффициент может быть меньше вплоть до 114 по Дове (Dawes" Limit).

    На практике, угловое разрешение телескопов ограничивается атмосферным дрожанием - приблизительно 1 угловой секундой, независимо от апертуры телескопа.

    • Угловое увеличение или кратность телескопа определяется отношением
    Γ = F f {\displaystyle \Gamma ={\frac {F}{f}}} ,

    где F {\displaystyle F} и f {\displaystyle f} - фокусные расстояния объектива и окуляра соответственно. В случае использования дополнительных оптических узлов между объективом и окуляром (оборачивающих систем, линз Барлоу , компрессоров и т. п.) увеличение должно быть умножено на кратность используемых узлов.

    ω = Ω Γ {\displaystyle \omega ={\frac {\Omega }{\Gamma }}} ,

    где Ω {\displaystyle \Omega } - угловое поле зрения окуляра (Apparent Field Of View - AFOV), а Γ {\displaystyle \Gamma } - увеличение телескопа (которое зависит от фокусного расстояния окуляра - см. выше).

    A = D F = 1 ∀ = ∀ − 1 {\displaystyle A={\frac {D}{F}}={\frac {1}{\forall }}={\forall }^{-1}} . ∀ = F D = 1 A = A − 1 {\displaystyle {\forall }={\frac {F}{D}}={\frac {1}{A}}={A}^{-1}} .

    A {\displaystyle A} и ∀ {\displaystyle {\forall }} являются важными характеристиками объектива телескопа. Это обратные друг другу величины. Чем больше относительное отверстие, тем меньше относительное фокусное расстояние и тем больше освещённость в фокальной плоскости объектива телескопа, что выгодно при фотоработах (позволяет уменьшить выдержку при сохранении экспозиции). Но при этом на кадре фотоприёмника получается меньший масштаб изображения.

    • Масштаб изображения на приёмнике:
    u = 3440 F {\displaystyle u={\frac {3440}{F}}} ,

    где u {\displaystyle u} - масштаб в угловых минутах на миллиметр ("/мм), а F {\displaystyle F} - фокусное расстояние объектива в миллиметрах. Если известны линейные размеры ПЗС-матрицы, её разрешение и размер её пикселов, то отсюда можно вычислить разрешение цифрового снимка в угловых минутах на пиксел.

    Классические оптические схемы [ | ]

    Схема Галилея [ | ]

    Телескоп Галилея имел в качестве объектива одну собирающую линзу, а окуляром служила рассеивающая линза. Такая оптическая схема даёт неперевернутое (земное) изображение. Главными недостатками галилеевского телескопа являются очень малое поле зрения и сильная хроматическая аберрация . Такая система все ещё используется в театральных биноклях , и иногда в самодельных любительских телескопах.

    Схема Кеплера [ | ]

    Схема Грегори [ | ]

    Эту конструкцию предложил в 1663 году Джеймс Грегори в книге Optica Promota . Главное зеркало в таком телескопе - вогнутое параболическое. Оно отражает свет на меньшее вторичное зеркало (вогнутое эллиптическое). От него свет направляется назад - в отверстие по центру главного зеркала, за которым стоит окуляр. Расстояние между зеркалами больше фокусного расстояния главного зеркала, поэтому изображение получается прямое (в отличие от перевёрнутого в телескопе Ньютона). Вторичное зеркало обеспечивает относительно большое увеличение благодаря удлинению фокусного расстояния .

    Схема Кассегрена [ | ]

    Схема Ричи-Кретьена [ | ]

    Приемники излучения [ | ]

    CCD-матрицы [ | ]

    ПЗС-матрица (CCD, «Charge Coupled Device») состоит из светочувствительных фотодиодов , выполнена на основе кремния , использует технологию ПЗС - приборов с зарядовой связью. Долгое время ПЗС-матрицы единственным массовым видом фотосенсоров. Развитие технологий привело к тому, что к 2008 году КМОП-матрицы стали альтернативой ПЗС.

    CMOS-матрицы [ | ]

    КМОП-матрица (CMOS, «Complementary Metal Oxide Semiconductor») выполнена на основе КМОП-технологии . Каждый пиксел снабжён усилителем считывания, а выборка сигнала с конкретного пиксела происходит, как в микросхемах памяти, произвольно.

    Системы адаптивной оптики [ | ]

    • Система лазерной гидирующей звезды. Лазерный луч направляется в небо, чтобы создать на любом участке неба искусственную звезду в натриевом слое атмосферы Земли на высоте около 90 километров. Свет от такой искусственной звезды используется для деформации специального зеркала, которое устраняет мерцание и улучшает качество изображения.

    Механика [ | ]

    Монтировка [ | ]

    Монтировка - это поворотная опора, которая позволяет наводить телескоп на нужный объект, а при длительном наблюдении или фотографировании - компенсировать суточное вращение Земли . Состоит из двух взаимно перпендикулярных осей для наводки телескопа на объект наблюдения, может содержать приводы и системы отсчёта углов поворота. Устанавливается монтировка на какое-либо основание: колонну, треногу или фундамент. Основная задача монтировки - обеспечение выхода трубы телескопа в указанное место и плавность ведения объекта наблюдений.

    Основные факторы, влияющие на качество решения задачи, следующие :

    • Сложность закона изменения атмосферной рефракции
    • Дифференциальная рефракция
    • Технологическая точность изготовления привода
    • Точность подшипников
    • Деформация монтировки

    Экваториальная монтировка и её разновидности [ | ]

    • Деформации монтировки различны в зависимости от положения телескопа.
    • При изменении положения телескопа изменяется и нагрузка на подшипники
    • Сложность при синхронизации с куполом монтировки

    Альт-азимутальная монтировка [ | ]

    Крупнейшие оптические телескопы [ | ]

    Телескопы-рефракторы [ | ]

    Обсерватория Местонахождения Диаметр, см / дюйм Год
    сооружения /
    демонтажа
    Примечания
    Телескоп всемирной Парижской выставки 1900 года. Париж 125 / 49.21" 1900 / 1900 Самый крупный рефрактор в мире, из когда либо построенных. Свет от звёзд направлялся в объектив неподвижного телескопа с помощью сидеростата .
    Йеркская обсерватория Уильямс Бэй, Висконсин 102 / 40" 1897 Крупнейший рефрактор в мире 1897-1900 гг. После демонтажа телескоп всемирной Парижской выставки 1900 года снова стал крупнейшим из эксплуатируемых рефракторов. Рефрактор Кларка .
    Обсерватория Лика гора Гамильтон, Калифорния 91 / 36" 1888
    Парижская обсерватория Медон , Франция 83 / 33" 1893 Двойной, визуальный объектив 83 см, фотографический - 62 см.
    Потсдам , Германия 81 / 32" 1899 Двойной, визуальный 50 см, фотографический 80 см.
    Обсерватория Ниццы Франция 76 / 30" 1880
    Пулковская обсерватория Санкт-Петербург 76 / 30" 1885
    Обсерватория Аллегейни Питтсбург , Пенсильвания 76 / 30" 1917 Рефрактор Thaw
    Гринвичская обсерватория Гринвич , Великобритания 71 / 28" 1893
    Гринвичская обсерватория Гринвич , Великобритания 71 / 28" 1897 Двойной, визуальный 71 см, фотографический 66
    Обсерватория Архенхольда Берлин , Германия 70 / 27" 1896 Самый длинный современный рефрактор

    Солнечные телескопы [ | ]

    Обсерватория Местонахождения Диаметр, м Год сооружения
    Китт-Пик Тусон, Аризона 1,60 1962
    Сакраменто-Пик Санспот, Нью-Мексико 1,50 1969
    Крымская астрофизическая обсерватория Крым 1,00 1975
    Шведский солнечный телескоп Пальма , Канары 1,00 2002
    Китт-Пик , 2 штуки в общем корпусе с 1,6 метра Тусон, Аризона 0,9 1962
    Тейде Тенерифе , Канары 0,9 2001
    Саянская солнечная обсерватория , Россия Монды , Бурятия 0,8 1975
    Китт-Пик Тусон, Аризона 0,7 1973
    , Германия Тенерифе , Канары 0,7 1988
    Митака Токио , Япония 0,66 1920

    Камеры Шмидта [ | ]

    Обсерватория Местонахождения Диаметр коррекционной пластины - зеркала, м Год сооружения
    Обсерватория Карла Шварцшильда Таутенбург , Германия 1,3-2,0 1960
    Паломарская обсерватория гора Паломар, Калифорния 1,2-1,8 1948
    Обсерватория Сайдинг-Спринг Кунабарабран , Австралия 1,2-1,8 1973
    Токийская астрономическая обсерватория Токио , Япония 1,1-1,5 1975
    Европейская южная обсерватория Ла-Силья, Чили 1,1-1,5 1971

    Телескопы-рефлекторы [ | ]

    Название Местонахождения Диаметр зеркала, м Год сооружения
    Гигантский южно-африканский телескоп , SALT Сатерленд , ЮАР 11 2005
    Большой Канарский телескоп Пальма , Канарские острова 10,4 2002

    Основные оптические системы зеркальных телескопов

    11 октября 2005 года в эксплуатацию был запущен телескоп Southern African Large Telescope в ЮАР с главным зеркалом размером 11 x 9.8 метров, состоящим из 91 одинакового шестиугольника.

    13 июля 2007 года первый свет увидел телескоп Gran Telescopio Canarias на Канарских островах с диаметром зеркала 10,4 м, который является самым большим оптическим телескопом в мире по состоянию на первую половину 2009 года .

    В современных составных рефлекторах с середины 1990-х годов используются деформируемые зеркала (англ. ) и адаптивная оптика , что позволяет компенсировать атмосферные искажения. Это стало прорывом в телескопостроении и позволило значительно повысить качество работы наземных телескопов.

    См. также

    Примечания

    Литература

    • Чикин А. А. «Отражательные телескопы» , Петроград, 1915
    • Навашин М. С. Телескоп астронома-любителя. - М .: Наука, 1979.
    • Сикорук Л. Л. Телескопы для любителей астрономии.
    • Максутов Д. Д. Астрономическая оптика. - М.-Л.: Наука, 1979.

    Ссылки

    • Анимационные оптические схемы: Максутова-Касегрена, Максутова - Ньютона, Грегори-Максутова

    Wikimedia Foundation . 2010 .


    Главные части в телескопе - объектив и окуляр. Объектив направляют в сторону объекта, который хотят наблюдать, а в окуляр смотрят глазом.

    Существует три основных типа оптических систем телескопов – рефрактор (с линзовым объективом), рефлектор (с зеркальным объективом) и зеркально-линзовый телескоп.

    Телескоп-рефрактор имеет в качестве объектива линзу в передней части трубы. Чем больше диаметр линзы, тем ярче кажется небесный объект в поле зрения, тем более слабый объект можно заметить в этот телескоп. Как правило, объектив рефрактора представляет собой не одиночную линзу, а систему линз. Они изготовляются из разных сортов стекла и склеиваются между собой специальным клеем. Это делается для того, чтобы уменьшить искажения в изображении. Эти искажения называются аберрациями. Аберрациями обладает любая линза. Главные из них – сферическая аберрация и хроматическая аберрация.

    Сферическая аберрация заключается в том, что края линзы сильнее отклоняют световые лучи, чем середина. Иными словами, лучи света, пройдя через линзу, не сходятся в одном месте. А нам очень важно, чтобы лучи сходились в одной точке. Ведь от этого зависит чёткость изображения. Но это еще полбеды. Ты знаешь, что белый свет является составным – в него входят лучи всех цветов радуги. В этом легко убедиться с помощью стеклянной призмы. Направим на неё узкий луч белого света. Мы увидим, что белый луч, во-первых, разложится на несколько цветных лучей, и, во-вторых преломится, т.е. изменит направление. Но самое важное то, что лучи разного цвета преломляются по-разному – красные отклоняются меньше, а синие – больше. Линза тоже своего рода призма. И она неодинаково фокусирует лучи разных цветов – синие собираются в точку ближе к линзе, красные – дальше от неё.


    Изображение, даваемое линзой, всегда слегка окрашено по краям радужной каймой. Так проявляет себя хроматическая аберрация.

    Чтобы уменьшить сферическую и хроматическую аберрации, средневековые астрономы придумали делать линзы с очень большим фокусным расстоянием. Фокусное расстояние – это расстояние от центра линзы до фокуса , т.е. точки, где происходит пересечение преломленных лучей света (на самом деле в фокусе получается крошечное изображение предмета). Задача объектива - собрать побольше света от небесного объекта и построить крошечное и чёткое изображение этого предмета в фокусе.


    Польский астроном XVII века Ян Гевелий изготавливал телескопы длиной 50 метров. Зачем? Чтобы не так сильно сказывались аберрации, т.е. чтобы получить возможно более чёткое и неокрашенное изображение небесного объекта. Конечно, работать с таким рефрактором было очень неудобно. Поэтому Гевелий, хотя и был трудолюбивым астрономом, многого не смог открыть.

    Впоследствии оптики придумали делать объектив не из одной, а из двух линз. Причём так подбирали сорта стекол и кривизну их поверхностей, что аберрации одной линзы гасили, компенсировали аберрации другой линзы.



    Так появился сложный объектив. Рефракторы сразу уменьшились в размерах. Зачем делать длинный телескоп, если качественный объектив можно сделать более короткофокусным? Именно поэтому в детских телескопах такое плохое изображение – ведь там используется в качестве объектива всего одна линза. А нужно минимум две. Одна линза стоит дешевле, чем две, поэтому детские телескопы так дешевы. Но всё-таки, какие бы стёкла оптики ни подбирали для объективов, совсем избежать хроматической аберрации не удаётся. Поэтому в рефракторах всегда есть небольшой синий ореол вокруг изображения. Однако в целом, рефракторы среди телескопов других систем дают самое чёткое изображение.

    Ты должен остановить свой выбор на рефракторе, если собираешься наблюдать подробности небесных объектов – горы и кратеры на Луне, полосы и Большое Красное Пятно на Юпитере, кольца Сатурна, двойные звёзды, шаровые звёздные скопления и т.п. Бледные, размытые объекты – туманности, галактики, кометы – нужно наблюдать в телескоп-рефлектор .

    В рефлекторе свет собирается не линзой, а вогнутым зеркалом определённой кривизны. Зеркало изготовить проще, чем линзу, потому что приходится шлифовать только одну поверхность. К тому же, для линз нужно особое качественное стекло, а для зеркал подходит любое стекло. Поэтому рефлекторы в целом стоят дешевле рефракторов с таким же диаметром линзы. Многие любители астрономии сами строят неплохие рефлекторы. Главное преимущество рефлектора в том, что зеркало не даёт хроматической аберрации. Первый в истории рефлектор создал Исаак Ньютон в XVIII веке. Этот английский учёный первым заметил, что вогнутое зеркало одинаково отражает лучи всех цветов и может создавать неокрашенное изображение. Ньютон разработал оптическую систему телескопа, которую принято называть Ньютоновской. Рефлекторы системы Ньютона изготовляются сегодня промышленным способом во многих странах мира.

    Самый большой рефлектор системы Ньютона в XVIII веке построил английский астроном Вильям Гершель. Диаметр вогнутого зеркала был 122 см, а длина трубы телескопа – 12 метров. Конечно, телескоп неуклюжий, но всё-таки это уже не 50-метровый рефрактор Гевелия. Со своим телескопом Гершель совершил много замечательных открытий. Одно из самых важных – открытие планеты Уран.

    Посмотрим на ход лучей в системе рефрактора и рефлектора.



    В рефракторе свет проходит через линзу и непосредственно попадает в окуляр и дальше в глаз наблюдателя. В рефлекторе свет отражается от вогнутого зеркала и направляется сначала на плоское зеркало, установленное в верхней части трубы, и только потом попадает в окуляр и глаз. В рефлекторе, таким образом, работает два зеркала – одно вогнутое (главное), другое плоское (диагональное). Задача главного зеркала такая же, как у линзового объектива - собирать свет и строить крошечное и чёткое изображение в фокусе.

    Плоское (диагональное) зеркало держится на специальных растяжках (как правило, их 4 штуки) в передней части трубы. А теперь представь: свет попадает в трубу телескопа, часть света загораживает плоское зеркало и растяжки. В результате на главное вогнутое зеркало попадает меньше света, чем могло попасть. Это называется центральным экранированием. Центральное экранирование приводит к потере чёткости изображения.



    Наконец, познакомимся с зеркально-линзовыми телескопами . Они сочетают в себе элементы и рефрактора и рефлектора. Там есть и вогнутое зеркало, и линза в передней части трубы. Как правило, задняя часть этой линзы посеребрена. Этот серебристый кружок играет роль дополнительного зеркала. Ход световых лучей в зеркально-линзовых телескопах сложнее. Свет проходит через переднюю линзу, затем попадает на вогнутое зеркало, отражается от него, идёт обратно к передней линзе, отражается от серебристого кружка, идёт обратно к вогнутому зеркалу и проходит сквозь отверстие в этом зеркале. И только после этого свет попадает в окуляр и глаз наблюдателя. Световой поток внутри трубы три раза меняет направление. Поэтому зеркально-линзовые телескопы так компактны. Если у тебя мало места на балконе, то свой выбор нужно остановить именно на таком телескопе.

    Существует несколько оптических систем зеркально-линзовых телескопов. Например, телескоп системы Максутова, Шмидта, Кассегрена, Клевцова. Каждый из этих оптиков по-своему решает основные недостатки зеркально-линзового телескопа. Что же это за недостатки? Во-первых, много оптических поверхностей. Давай посчитаем: как минимум 6, и на каждой из них теряется часть света (к сведению, в рефракторе и рефлекторе их по 4). В нутри такого телескопа теряется много света. Если рефрактор способен пропускать 92% попадающего в него света от небесного объекта, то через зеркально-линзовый телескоп проходит только 55% света. Иными словами, объекты в такой телескоп выглядят более тусклыми по сравнению с рефрактором с таким же диаметром объектива. Поэтому зеркально-линзовые телескопы лучше использовать для ярких объектов – Луны и планет. Но, учитывая центральное экранирование из-за зеркала на передней линзе, приходится признать, что чёткость изображения также ниже, чем в рефракторе. Во-вторых, и линза, и вогнутое зеркало создают свои аберрации. Поэтому качественный зеркально-линзовый телескоп стоит довольно дорого.





    Увеличение телескопа. Чтобы найти увеличение телескопа, нужно фокусное расстояние объектива разделить на фокусное расстояние окуляра. Например, объектив имеет фокусное расстояние 1 м (1 000 мм), при этом у нас в распоряжении три окуляра с фокусными расстояниями 5 см (50 мм), 2 см (20 мм) и 1 см (10 мм). Меняя эти окуляры, мы получим три увеличения:


    Обрати внимание, если мы берём фокусное расстояние объектива в мм, то и фокусное расстояние окуляра тоже в мм.

    Казалось бы, если брать всё более короткофокусные окуляры, то можно получать всё большие увеличения. Например, окуляр с фокусным расстоянием 1 мм дал бы с нашим объективом увеличение 1 000 крат. Однако изготовить такой окуляр с высокой точностью очень сложно, да и нет необходимости. При наземных наблюдениях использовать увеличение более 500 крат не удаётся из-за атмосферных помех. Даже если поставить увеличение в 500 крат, атмосферные течения так сильно портят изображение, что на нём нельзя рассмотреть ничего нового. Как правило, наблюдения проводят с увеличением максимум 200-300 крат.

    Несмотря на применение больших увеличений, звёзды в телескоп всё равно выглядят точками . Причина - колоссальная удалённость звёзд от Земли. Однако, телескоп позволяет увидеть невидимые глазом звёзды, т.к. собирает больше света, чем человеческий глаз. Звёзды в телескоп выглядят ярче, у них лучше различаются оттенки, а также сильнее заметно мерцание, вызываемое земной атмосферой.

    Максимальное и минимальное полезные увеличения телескопа. Одно из назначений телескопа в том, чтобы собрать побольше света от небесного объекта. Чем больше света пройдёт через объектив телескопа, тем ярче будет выглядеть объект в поле зрения. Это особенно важно при наблюдении туманных объектов - туманностей, галактик, комет. При этом нужно, чтобы весь собранный свет попал в глаз наблюдателя.


    Максимальный диаметр зрачка человеческого глаза 6 мм. Если выходящий из окуляра световой пучок (т.н. выходной зрачок ) будет шире 6 мм, значит, часть света в глаз не попадёт. Следовательно, нужно использовать такой окуляр, который даёт выходной зрачок не шире 6 мм. При этом телескоп даст минимальное полезное увеличение. Его рассчитывают так: диаметр объектива (в мм) делят на 6 мм. Например, если диаметр объектива 120 мм, то минимальное полезное увеличение будет 20 крат. Ещё меньшее увеличение на этом телескопе использовать нерационально, так как выходной зрачок будет больше 6 мм.

    Запомни закономерность: чем меньше увеличение телескопа, тем больше выходной зрачок (и наоборот).

    Минимальное полезное увеличение телескопа ещё называют равнозрачковым , потому что выходной зрачок окуляра совпадает с максимальным диаметром зрачка человека - 6 мм.

    Чтобы найти максимальное полезное увеличение телескопа, нужно диаметр объектива (в мм) умножить на 1,5. Если диаметр объектива 120 мм, то получим максимальное полезное увеличение 180 крат. Большее увеличение на этом телескопе получить можно, но это будет бесполезно, т.к. новых деталей выявить не удастся из-за появления дифракционных картин. При наблюдении двойных звёзд иногда используют увеличение, численно равное удвоенному диаметру объектива (в мм).

    Таким образом, на телескопе с диаметром объектива 120 мм имеет смысл использовать увеличения от 20 до 180 крат.

    Существует т.н. проницающее увеличение. Считают, что при его использовании достигается наилучшее проницание - становятся видны самые слабые звёзды, доступные для данного телескопа. Проницающее увеличение используют для наблюдения звёздных скоплений и спутников планет. Чтобы его найти, нужно диаметр объектива (в мм) разделить на 0,7.

    В телескопах совместно с окуляром иногда применяют т.н. линзу Барлоу , представляющую собой рассеивающую линзу. Если линза Барлоу двухкратная (2х), то она как бы увеличивает фокусное расстояние объектива в 2 раза (3-кратная линза Барлоу - в 3 раза). Если, например, у объектива фокусное расстояние равно 1 000 мм, то с использованием 2-кратной линзы Барлоу и окуляра с фокусным рассоянием 10 мм мы получим увеличение 200 крат. Таким образом, линза Барлоу служит для повышения увеличения. Конечно, эта линза вносит в общую картину свои аберрации, поэтому при выявлении мелких деталей на Луне, Солнце, планетах от этой линзы лучше отказаться.

    Подробнее смотри

    Телескоп, оборудованный для фотографии небесных объектов, называется астрографом . В нём вместо окуляра используется приёмник излучения (раньше это была фотопластинка, фотоплёнка, сегодня - приборы с зарядовой связью). Светочувствительный элемент приёмника излучения располагается в фокусе объектива, так что крошечное изображение предмета запечатлевается. Сегодня астрограф непременно используется в сочетании с компьютером.

    Телескопы-рефлекторы, их достоинства и недостатки

    Настало время разобраться в том, что же такое рефлектор и чем он принципиально отличается от рефрактора.

    Само слово рефлектор произошло от английского «reflect» - отражать. Из этого ясно, что в качестве основного элемента схемы выступает зеркало. Отцом рефлектора стал Исаак Ньютон, который собрал первый такой телескоп в 1688 году. До этого существовала лишь одна схема – созданный Галилеем рефрактор, который сильно грешил хроматической аберрацией (будучи неахроматическим, неспособным собрать в фокус лучи с разной длиной волны, значительно изменяя картинку).

    Оптическая схема


    До сих пор схема Ньютона остается самой популярной для каждого, кто захочет купить зеркальный телескоп. Суть ее крайне проста: свет попадает на параболическое (иногда — сферическое) главное зеркало, которое, в свою очередь, направляет его на диагональное зеркало (плоское). И уже этот элемент выводит свет на окуляр.

    Википедия утверждает, что существует еще 7 различных рефлекторных схем, но изучать их имеет смысл разве что из праздного любопытства. По большей части в промышленных телескопах используется именно схема Ньютона. Если кто-то говорит «рефлектор», то он имеет в виду именно «рефлектор Ньютона», все прочие схемы будут обозначаться по фамилии создателя. Это объясняется тем, что все они значительно менее удобны. Где-то требуется больше зеркал, где-то смотреть приходится под углом. Ньютон – это простая и нестареющая классика.

    Достоинства рефлектора

    Его создавали для того, чтобы избавиться от хроматических аберраций, которые давали линзовые телескопы. Было бы странно полагать, что они у него остались. Полное отсутствие этого дефекта – главное достоинство рефлекторов. К тому же, они обладают высокой светосилой (до 1:4 в серийных моделях), которая рефракторам не может и присниться. Именно зеркальная схема сделала телескопы с большим диаметром доступными простому обывателю. Из-за большого фокусного расстояния рефрактору с большим диаметром понадобилась бы очень длинная (около 7 метров) труба. К ней, естественно, нужна огромная монтировка. Стоимость такого устройства исчислялась бы, наверное, в миллионах. То, что мы можем купить телескоп с большим диаметром за гораздо меньшие деньги – заслуга исключительно рефлекторов.

    Недостатки зеркального телескопа

    Формально к ним относятся световые потери из-за наличия второго зеркала (в рефракторе свет идет сразу вам в глаз, а в рефлекторе ему нужно «попутешествовать» между зеркалами), воздушные потоки внутри открытой трубы и прочее. На практике же вам будет портить жизнь лишь одна вещь – необходимость настройки зеркал (юстировки) после любой перевозки. Юстировка отнимает малую часть драгоценного времени наблюдений. При наличии опыта она занимает не более 5 минут.Впрочем, юстировки не нужно бояться – она совсем не сложна, научиться сможет любой.

    Вердикт

    Начиная с диаметра 110мм, имеет смысл купить рефлектор. Рефрактор, который вы сможете купить за эти деньги, будет иметь значительно меньший диаметр (в районе 90мм). Рефлекторы просты и удобны в настройке, их рекомендуется брать всем, за исключением тех, кому необходимы наземные объекты.

    Рефлектор

    Рефлектором (или зеркальным телескопом) называют оптический телескоп, который собирает световой пучок с помощью зеркала. В подобных телескопах зеркало представляет собой вогнутую пластину, передняя поверхность которой покрыта отражающим материалом. Пластина может быть сферической или параболической формы. Последняя используется для больших телескопов, чтобы избежать потери контрастности изображения (так как если использовать в больших телескопах зеркала сферической формы, свет не будет в итоге сходиться в одной точке) Самый первый рефлектор был создан Исааком Ньютоном в 17 веке, сегодня система ньютоновского рефлектора является наиболее популярной среди современных телескопов. Однако существуют и другие оптические системы зеркальных телескопов, которые будут рассмотрены ниже.

    Телескоп Ньютона. Телескоп Ньютона является самым простым по своему строению. Плоское диагональное зеркало располагается вблизи фокуса под углом 45 градусов. Оно отклоняет пучок свет вверх. В зависимости от размера относительного отверстия главное зеркало может быть параболической или сферической формы. Изображение в телескопе Ньютона перевернутое.

    Телескоп Грегори. Телескоп Грегори отличается от телескопа Ньютона тем, что эллиптическое зеркало, отражающее световой луч в окуляр (который расположен в центральном отверстии главного зеркала), находится за фокусом главного зеркала. Это обеспечивает прямое изображение.

    Телескоп Кассегрена. Телескоп Кассегрена по своему строению напоминает телескоп Грегори, однако здесь вторичное выпуклое зеркало расположено вблизи фокуса главного вогнутого зеркала (а не за его фокусом), а полное фокусное расстояние объектива больше, чем у главного. Это обеспечивает меньшую длину трубы телескопа по сравнению с телескопом Грегори, а также меньшее экранирование.

    Отдельно стоит отметить модернизированную версию телескопа Кассегрена – система Ричи-Кретьена, которая отличается тем, что в его строение входит вогнутое гиперболическое главное зеркало и выпуклое гиперболическое вторичное зеркало. В данном телескопе исправлены сферические аберрации и кома.

    Брахиты. В данном телескопе вторичное зеркало находится за пределами пучка, падающего на главное зеркало. Зеркала имеют форму внеосевых параболоидов гиперболоидов. Астигматизм при такой конструкции может компенсироваться наклоном вторичного зеркала. Особенностью подобного телескопа является то, что пучок света не экранируется, что обеспечивает изображению хорошую резкость и контрастность.

    Телескоп Мерсенна. Отличительной чертой телескопа является то, что в нем фокусы главного и вторичного зеркал совмещены. Зеркала вогнутые параболические. При попадании пучка света на главное зеркало, он сходится к его фокусу, а потом перехватывается вторичным зеркалом, которое установлено за фокусом. Вторичное зеркало направляет пучок света в центральное отверстие в главном зеркале.


    Close